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Abstract. The experimental dislocation resistivity of rolled samples of 99.9999% pure aluminium
was investigated in the temperature range from 4.2 K to 300 K. The minimum in the deviation from
Matthiessen’s rule (DMR) below 40 K and the step height of the DMR from 4.2 K to 300 K
can be explained by anisotropic scattering in terms of a three-group or a two-group model. The
physical relevance of the fitted anisotropy parameters for electron–dislocation (Ad) and electron–
phonon scattering (Ap) can be better seen in the two-group model. The variation of Ad and Ap
with dislocation density is similar to that for the noble metals, whereby Ap at low temperatures is
much more anisotropic for aluminium. The change of Ap with increasing dislocation density for
T � 50 K can be understood if anisotropic small-angle scattering at local phonon modes originating
from the dislocations is taken into account. This anisotropy could arise, as the Burgers vectors of
the dislocations are oriented mainly in [011] directions.

1. Introduction

Few researchers have investigated the temperature dependence of the deviation from
Matthiessen’s rule of deformed high-purity aluminium [1–3] and dilute aluminium alloys
[1]. An obvious feature is the occurrence of a minimum in the DMR curves at temperatures
between 10 K and 40 K [1]. The situation is complicated by the fact that in deformed high-purity
aluminium a proportion of the dislocations produced are already annealed at room temperature
[1, 4]. Dislocations are annihilated more rapidly if the applied deformation is larger [4, 5].
Barnard [2] tried to explain the results of Endo et al [1] by using a three-group model (3GM)
which had been successful for the interpretation of the temperature dependence of the resistivity
below 50 K [6] and the low-field Hall coefficient of pure aluminium [7]. However, within
this model the anisotropy parameters obtained for electron–dislocation scattering were rather
doubtful as they depended very strongly on the dislocation density [2].

The purpose of the present work is to present new measurements which are interpreted
not only within Barnard’s 3GM [2] but also using a new concept: a two-group model (2GM).
The electrons on the Fermi surface are divided only into the following groups: electrons
which are near to the Brillouin zone boundaries and electrons which are far away. Such a
simplification corresponds better to the Watts model [8] of electron–dislocation scattering,
where the dislocation resistivity is described by Bragg scattering of electrons lying very near
to the Brillouin zone boundaries [9]. The division of the Fermi surface into different groups of
electrons only has physical relevance if the variation of the (‘real’) average relaxation time (or

† Telephone: ++43-1-4277-514 44; fax: ++43-1-4277-514 40.

0953-8984/00/5010499+16$30.00 © 2000 IOP Publishing Ltd 10499



10500 E Schafler and F Sachslehner

mean free path) of the electrons roughly follows the group boundaries. We will demonstrate
that there are formal similarities of the temperature dependences of the DMR for deformed
aluminium and that for deformed noble metals.

2. The DMRs in the two-group and three-group models

The temperature dependence of the experimental dislocation resistivity, ρd,ex(T ), is written
usually [10, 11] as

ρd,ex(T ) = ρ(T , ε)− ρ(T , ε = 0) (1)

where ρ(T , ε) and ρ(T , ε = 0) are the resistivities of the deformed sample (with true
strain ε; see section 3) and an undeformed reference sample at the measuring temperature
T . Theoretically, ρ(T , ε) and ρ(T , ε = 0) are written as

ρ(T , ε) = ρi + ρp + ρd + δipd (2)

ρ(T , ε = 0) = ρi + ρp + δip. (3)

Here ρi, ρp and ρd are the individual resistivity contributions of impurities, phonons and
dislocations, δipd is the DMR between impurities, phonons and dislocations and δip is the
DMR between impurities and phonons in the reference sample. Hence we get

ρd,ex(T ) = ρd + δipd − δip. (4)

For high-purity metals, δipd � δip is usually valid [11] and therefore ρd,ex(T ) reflects mainly
the first DMR contribution. However, at low temperatures the case δipd < δip is also possible,
corresponding to a minimum in ρd,ex(T ), as will be shown in this work (see section 4.4). We
assume that at 4.2 K, δip vanishes (as ρp(4.2) ≈ 0). From (4) it is clear that ρd (the so-called true
dislocation resistivity which has at least a small difference from ρd,ex(4.2) even for high-purity
metals) is not directly accessible to experiment and the DMRs in (4) have to be modelled.

For a description of the DMRs within a two-group model (2GM) [10], the three-scatterer
DMR formula [11] developed for the noble metals can be taken over:

δ123 =
( 3∑
j=1

ρjρj+1bAj+2(Aj − Aj+1)
2

)/( 3∑
j=1

ρj (1 + bAj )
2Aj+1Aj+2

)
. (5)

δ123 is the DMR between three scatterers. The notation is cyclic with ρ4 ≡ ρ1, ρ5 ≡ ρ3,
A4 ≡ A1, A5 ≡ A2, where Aj is the scattering anisotropy parameter and ρj is the resistivity
of the j th scatterer. Instead of the neck and belly groups, we define the groups of electrons
near to (N) and far from (F) the Brillouin zone boundaries. Then b = ∫

N v dS/
∫

F v dS
(cf. [12]), where v is the Fermi velocity and dS the Fermi surface element. Aj can be written
asAj = τNj /τFj , where τNj and τFj are the relaxation times in the near and far electron groups
for the j th scatterer. It is emphasized that (effective) relaxation times for resistivity can also
be defined at low temperatures where, additionally, small-angle electron–phonon scattering
occurs. However, one is not allowed to use such relaxation times (or anisotropy parameters)
for other transport properties [13].

In Barnard’s 3GM [2, 6, 7], as described in the following, the Fermi surface is divided
into a free-electron-like portion in the second zone, hole-like cylinders in the second zone just
below the Brillouin zone boundaries and the electron-like monster in the third zone. Below
40 K the electron–phonon mean free paths in each group are characterized by [2]

l
p
− = γ T −5 l

p
++ = αT −3.3 l

p
−− = βT −2.8 (6)
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where α/β = 4.95 and γ /α = 600. The anisotropy parameters of the electron–impurity
scattering are defined as (superscript i for impurities; subscripts −, ++ and −− for the different
groups)

a′ = li++

li−
b′ = li−−

li−
(7)

where according to [6] a′ = 1 and b′ = 0.91. Analogously, the anisotropy parameters a′′ and
b′′ are defined for electron–dislocation scattering. Then, ρ(T , ε) in (2) and ρ(T , ε = 0) in (3)
can be written as (cf. [2, 6])

ρ(ε, T ) = (ρi + ρd)

(
1 +

y

x
a∗ +

z

x
b∗

) [
1

1 + F
+

1

1 + G

(
y

x
a∗

)
+

1

1 + H

(
z

x
b∗

)]−1

(8)

ρ(ε = 0, T ) = ρi

(
1 +

y

x
a′ +

z

x
b′

) [
1

1 + F
+

1

1 + G

(
y

x
a′

)
+

1

1 + H

(
z

x
b′

)]−1

(9)

where x, y and z are band-structure terms proportional to the areas of the three regions of the
Fermi surface and

a∗ = a′(1 + P)/(1 + Q) b∗ = b′(1 + P)/(1 + R) (10)

where

P = ρd(1 + (y/x)a′′ + (z/x)b′′)
ρi(1 + (y/x)a′ + (z/x)b′)

Q = a′P/a′′ R = b′P/b′′. (11)

The details of the terms F , G and H can be found in [6] (the appropriate values of a∗ and b∗

or a′ and b′ have to be used). According to [6] we use y/x = z/x = 0.4 (a ratio of Fermi
surface integrals similar to the term b in the 2GM). a∗ is the mean anisotropy parameter of
impurities and dislocations together, assuming that there is no contribution of the DMR between
impurities and dislocations (this point was not mentioned by Barnard [2], and compared with
a correct treatment of the DMR in the 3GM there will just be some shift in the fitted values of
a′′ and b′′ which is not of great importance in our context). Equation (9) subtracted from (8)
gives the description of ρd,ex(T ) in the 3GM (see (1)).

In the high-temperature region (80 K to 300 K) where the resistivity varies linearly with
temperature, we may assume that the electron–phonon scattering is isotropic (as for the noble
metals) and that, therefore, the electron–phonon mean free paths are approximately equal.
Then the terms F , G and H given in [6] simplify, e.g. for three scatterers (for two scatterers
replace a∗ by a′ and b∗ by b′) to

F = ρp

ρi

(
1 +

y

x
+
z

x

)(
1 + a∗ y

x
+ b∗ z

x

)−1

G = a∗F H = b∗F. (12)

3. Experimental details

The samples were prepared from rods (diameter 6 mm) of 99.9999% pure aluminium
(MATERIAL RESEARCH S.A.). According to the analysis certificate, the significant
impurities were Si (1 ppm), Mg (0.8 ppm) and Ca (0.4 ppm). Pieces of 35 mm length were
cut and rolled to sheets of different thicknesses (suited to getting, after the final deformation,
samples with thickness of approximately 200 µm). The sheets were annealed in high vacuum
(p < 3 × 10−3 Pa) at 380 ◦C for ten hours and had then an impurity resistivity (residual
resistivity at 4.2 K) ρi = 0.58 n! cm. The mean grain size seen on the surface of the sheets
was ≈400 µm.
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The dislocations were introduced into the annealed sheets by rolling in steps of ≈10%
strain up to the desired ε-value: 10% < ε < 160% (true strain: ε = ln(d0/d); d0 is the initial
and d is the final thickness of the sample). The final arm-shaped samples (45 × 3 × 0.2 mm3)
were cut by spark erosion (for details see [14]). Electrical contact to the samples was made by
means of spot-welded high-purity aluminium wires (0.25 mm diameter). The samples were
stored in liquid nitrogen. The total exposure at room temperature of the arm-shaped samples
between the introduction of dislocations and the DMR measurement was ≈50 h.

For the isochronal and isothermal annealing experiments, separate samples in the form
of strips (35 × 3 × 0.4 mm) were prepared (with ρi = 0.48 n! cm; this value is slightly
lower than for the arm-shaped samples, as the strips had approximately twice the thickness
and therefore the surface contamination caused by rolling was reduced). The strips were
quenched immediately after the rolling process into liquid nitrogen and were mounted into the
sample holder in liquid nitrogen (press contacts). The isothermal annealing was performed
at room temperature. The holding time for the isochronal annealing was seven minutes; the
temperature was varied in 10 K steps. Temperatures between −160 ◦C and +20 ◦C were
realized by varying the position of the sample holder in the neck of the helium can (accuracy
of temperature: ±1 K). Annealing at the temperatures from +30 ◦C to 140 ◦C was performed in
an oil bath (accuracy: ±0.1 K). The resistance of the samples between the various isothermal
and isochronal annealing states was always measured in liquid helium at 4.2 K with a resolution
of 1 nV.

The temperature dependence of the resistance of the deformed samples was always
measured together with that of an undeformed reference sample in an evaporation cryostat
as described elsewhere [11]. The geometry factor G was determined from the relation (RT is
the room temperature)

G = R(RT)− R(4.2 K)

ρp(RT)
. (13)

Here R(RT) and R(4.2 K) are the resistance values of the undeformed samples (reference
samples) or of annealed deformed samples (after doing the required measurements). ρp(RT)
is the ideal phonon resistivity of aluminium at room temperature [15] and was interpolated
from the values at 273.15 K and 295 K. The deformed samples were annealed for six hours at
380 ◦C, where the resistivity values of the reference samples agreed well (±0.1 n!cm) with the
resistivity values of the annealed samples. The experimental dislocation resistivity is obtained
from (1).

4. Results and discussion

4.1. The experimental dislocation resistivity at 4.2 K and the annealing behaviour of
dislocations

Figure 1 shows the experimental dislocation resistivity ρd,ex(T ), at T = 4.2 K, 77 K and 125 K,
as a function of the deformation ε. The beginning of the curve at 4.2 K agrees well with the
data of Wintenberger [16] for 99.999% pure aluminium. The maximum at ε = 65% (for 4.2 K
and 77 K) arises from the fact that in high-purity aluminium dislocations are already partially
annealed at room temperature as will be shown below. For 125 K the maximum is shifted to
ε = 91% by the higher DMR contributions at 125 K.

The results of our separate isochronal and isothermal annealing investigations are
represented in figure 2 and figure 3. The isochronal curves (figure 2) show the typical two-stage
annealing [4, 17]. The first rapid decreases of the resistivity curves are very similar for all four
samples, starting at −70 ◦C and stemming from the annealing of vacancies (first stage). The
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Figure 1. The experimental dislocation resistivity ρd,ex(T ) at T = 4.2 K, 77 K and 125 K as
functions of the deformation ε. Diamonds: data from Wintenberger [16].

Figure 2. Isochronal annealing after rolling and quenching to 77 K. ρF = 0.48 n! cm (final
resistivity); ρI (initial resistivity) has the values 1.77, 4.69, 11.90 and 17.40 n! cm for the ε-values
4, 12, 71 and 111%, respectively. Note: ρF, ρI and ρ(T ) were measured at 4.2 K.

second rapid decrease (second stage) is shifted to lower temperatures with increasing ε-value
and lies in the range −20 ◦C (ε = 111%) to +40 ◦C (ε = 4.5%). This second stage originating
from the annealing of dislocations becomes more visible as ε (or the initial dislocation density)
becomes higher.



10504 E Schafler and F Sachslehner

Figure 3. Isothermal annealing after rolling and quenching to 77 K at room temperature (≈298 K).
ρF = 0.48 n! cm; ρI has the values 2.022, 5.124, 12.140 and 16.947 n! cm for the ε-values 4, 12,
71 and 111%, respectively.

The isothermal annealing curves at room temperature (figure 3) show the largest resistivity
decrease within the first six minutes. After three hours the resistivity decreases only rather
slowly. However, the higher the deformation, the lower the level that the curves reach. In
particular, the curve for ε = 111% lies significantly lower than the other curves. The values
of the isothermal curves at 200 hours (out of range in figure 3) are marked by crosses on the
related isochrones of figure 2. Hence, it can be concluded that during handling and storage of
the samples at room temperature, a considerable number of dislocations are lost (especially if
ε > 70%). As the loss of dislocations is larger at higher values of deformation, each curve of
the experimental dislocation resistivity in figure 1 shows a maximum.

For high-purity metals the discrepancy between ρd,ex(4.2) and ρd is small (<0.06 n! cm
for the present samples; see section 4.3). As ρd is proportional to the length of the dislocation
line [9, 18] and rather insensitive to the dislocation arrangement [19] and the long-range strain
field [20], it will be a measure of the dislocation density. Thus, from ρd,ex(4.2) given in figure 1,
the dislocation density due to electrical measurements, Ne, can already be calculated:

Ne = ρd,ex(4.2)/Rd (14)

where Rd = 1.1 × 10−25 ! m3 is the experimental value of the specific dislocation resistivity
of aluminium after [8]. The result is shown by the open circles in figure 4. For comparison, the
dislocation density obtained by x-ray Bragg profile analysis (Nx) for comparable 99.9999%
pure aluminium samples after [21] is also plotted in figure 4. It can be seen that the x-ray
method ‘sees’ the same maximum in the dislocation density as the electrical resistivity and
that the values ofNe andNx agree well within the errors. Here it should be noted that agreement
between Ne and Nx was not found for copper [22] and dilute copper–gold alloys [14], where
for ε > 40% the Nx-values are only 60% of the Ne-values. The higher dislocation density
from the electrical measurements was interpreted as reflecting the fact that the XPA method
does not usually ‘see’ dislocation loops with a diameter smaller than 5 nm. Since copper has
a low stacking fault energy [23], deformation-induced vacancies can agglomerate and form
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Figure 4. Comparison of the dislocation densities from electrical measurements (Ne; open circles)
and from XPA (Nx; full circles).

small dislocation loops. In contrast, aluminium has a high stacking fault energy [23] which
impedes the formation of small dislocation loops from deformation-induced vacancies. As
shown in figure 2, the vacancies can anneal far below room temperature.

4.2. The temperature dependence of the experimental dislocation resistivity

In order to eliminate a possible systematic error in the shape factor, we use the normalized
experimental dislocation resistivity D(T ) given as (see (4))

D(T ) = ρd,ex(T )

ρd,ex(4.2)
= ρd + δipd(T )− δip(T )

ρd + δipd(4.2)− δip(4.2)
. (15)

Since δip(4.2) ≈ 0 and δipd(4.2) ≈ δid(4.2), equation (15) yields approximately

D(T ) ≈ ρd + δipd(T )− δip(T )

ρd + δid(4.2)
(16)

where δid(4.2) � ρd (and therefore the difference between ρd,ex(4.2) and ρd is small; see
section 4.3). The full temperature dependence of the normalized experimental dislocation
resistivity D(T ) can be seen in figures 5(a), 5(b) (surveyed up to room temperature) and
figure 6 (details below 35 K). The qualitative behaviour of the data (symbols in figure 5) is
comparable to that of the noble metals [12, 24]: there is a rapid increase of the DMR in the
temperature range from 25 K to 125 K and then the DMR levels off. However, while for
the noble metals the values D(300) are between 1 and 2 [11], for the aluminium samples
considered, a range between 2 and 20 is covered. As an example, D(125), which corresponds
roughly to D(300), and D(77) are shown in figure 7. According to Watts (p 399 of [8]), the
decrease of the normalized dislocation resistivity (at a fixed temperature) with increasing ρd,ex

has a natural explanation: the curves in figure 7 follow mainly the ratio ρp(T )/ρd (where T is
constant); however, there is also some influence of Ap(T ) (which may be assumed to be unity
at 125 K) and the geometry of the Brillouin zone and of the Fermi surface (which determines
the anisotropy of the electron–dislocation scattering).
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(a)

(b)

Figure 5. Normalized dislocation resistivity D(T ) as a function of temperature from 4.2 K to
300 K. Symbols: experimental data; full lines: DMR fits made by adjusting Ad and ρd (using (17)
and (18)) with anisotropic Ap-values; dashed lines: DMR fits like the full lines but with Ap = 1.
(a) Full circles: ε = 25%; open circles: ε = 33%; triangles: ε = 65%; squares: ε = 91%.
(b) Squares: ε = 10%; diamonds: ε = 114%; circles: ε = 160%. Note: the full lines for 10%
and 114% coincide.

In the low-temperature region (figure 6) a minimum occurs for deformations between 10%
and 65%, where the depth of the minimum decreases with increasing dislocation resistivity
(compare figure 1). Although for the samples with 114% and 160% deformation the dislocation
resistivity is comparable (114%) or smaller (160%) than that for the sample with 10%
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Figure 6. Normalized dislocation resistivityD(T ) as a function of temperature from 4.2 K to 35 K.
Symbols: experimental data; full lines: mathematical curves fitted to the experimental data; dashed
curve: 2GM fit of the 25% sample with the exact-fit data for the 10% sample (with Ad = 0.07,
Ai = 1.2 and Ap(10%); see table 1); dotted line: 2GM fit for the 114% sample with Ad = 0.07,
Ai = 0.1 and Ap(10%); see the text.

Figure 7. Normalized dislocation resistivities D(77) and D(125) as functions of the experimental
dislocation resistivity ρd,ex(4.2).

deformation (compare figure 1), the curves for the two former samples show a steep increase
instead of a minimum. Qualitatively, the behaviour of the curves in figure 6 is comparable to that
in figure 2 of the work of Endo et al [1] which shows DMR curves for drawn wires of 99.9999%
pure aluminium. Endo et al also found that samples with approximately the same dislocation
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Table 1. Anisotropy parameters for electron–phonon scattering (see the text).

T (K) Ap(Al) ap bp Al(10%) Al(114%)

6 0.28 0.035 0.017 0.013 71
10 0.30 0.084 0.053 0.025 61
16 0.33 0.19 0.15 0.18 13
20 0.36 0.27 0.25 0.43 4.7
26 0.41 0.42 0.44 0.64 2.0
30 0.44 0.54 0.60 0.79 1.63
36 0.49 0.74 0.89 0.97 1.47
40 0.52 0.88 1.13 1.11 1.46
50 0.60 1.29 1.84 1.54 1.56

resistivity can show either a minimum (slightly deformed sample) or a steep increase in the
DMR curve if the dislocation density after deformation was lowered by annealing (e.g., at
200 ◦C for 30 minutes). However, Endo et al [1] also observed the annihilation of dislocations
due to holding the samples at room temperature, as is found in the present investigation.

4.3. Step-height fits with the two-group and three-group models

We define the step height of the temperature dependence of the normalized dislocation
resistivity as D(280 K) − 1 (the difference in D(T ) between 280 K and 4.2 K). Then the
true dislocation resistivity ρd and the appropriate anisotropy parameter Ad can be calculated
within the 2GM by using the following two fitting conditions for the experimental data:

ρd,ex(4.2) = ρd + δid(4.2) (17)

D(280) = ρd,ex(280)

ρd,ex(4.2)
= ρd + δipd(280)− δip(280)

ρd + δid(4.2)
(18)

where δid(4.2), δipd(280) and δip(280) are described by (5), relating the subscripts 1, 2, 3 to
i, p, d (standing for impurities, phonons and dislocations). We use:

(i) ρi = 0.58 n! cm andAi = 1, as Barnard estimated the anisotropy of the electron–impurity
scattering to be near unity [6]. Here it should be noted that anisotropy parameters or ratios
to the mean free path (l) differ from ratios to the relaxation time (τ ) by a factor that is the
ratio of the Fermi velocities (v), as l = vτ for each group. Since we want to show only the
relative importance of the anisotropy parameters, we may assume v = 1 (in free-electron
units).

(ii) ρp as the ideal phonon resistivity of aluminium, after [15], and Ap as a function of
temperature derived in the following way: the temperature scale of the rather reliable
Ap-curve for copper [24] was multiplied by &(Al)/&(Cu) in order to adapt the Ap-curve
to the actual Debye temperature (&). We used &(Al) = 428 K and &(Cu) = 346 K [25].
Values of this adapted curve are indicated as Ap(Al) in table 1.

(iii) ρd and Ad fitted.
(iv) b = 0.15 as a reasonable assumption compared to b = 0.15 to 0.219 for the noble metals.

Having Ad and ρd fixed by (17) and (18), the whole temperature dependence of D(T )
given by (16) can be calculated for each sample investigated. The results are shown by the
solid curves in figures 5(a) and 5(b). It can be seen that the fits for the samples with 10%, 25%,
33% and 65% deformation are quite close to the experimental points, whereas for the samples
with 91%, 114% and 160% deformation, larger deviations occur. This is a similar behaviour
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to that found for the noble metals [11, 24]. If Ap = 1 is chosen for the fits (dashed curves
in figures 5(a) and 5(b)), the discrepancy from the experimental data gets significantly larger.
Thus our adaptation of the Ap-curve of copper to aluminium is reasonable.

The fitted values ofAd are plotted in figure 8 as a function of the deformation. In addition
to the fit with b = 0.15 we performed the fits within the 2GM also with b = 0.277 and b = 0.1
(not shown). The Ad-values obtained are proportional to ρd,ex(4.2) (cf. figure 1) and to the
selected value of b. Here it should be noted that the quality of the step-height fits shown in
figure 5 is influenced only very slightly by which value of b is considered. b = 0.277 was
chosen, because with this value, at the maximum dislocation resistivity (ε = 65%) the value
Ad = 0.1 is reached, which is a typical value for the noble metals [12]. The variation of the
Ad-values of the present aluminium samples is substantially comparable with that of copper
samples having ρd,ex(4.2) also in the range 0 to 2.5 n! cm [11, 26]. In this range for high-purity
copper, typically 0.05 < Ad < 0.1 was found [11], whereas our fits for aluminium require
typically 0.01 < Ad < 0.1. However, for copper with ρi ≈ 0.6 n! cm and with rather small
Ai-values, a constant or decreasing variation of Ad with the dislocation resistivity was also
found [11]. We checked (not shown) that, unlike the case for copper, the principal behaviour
of the Ad-curves in figure 8 remained the same independently of the choice of usual Ai-values
in the range 0.1 to 3. For b = 0.15, 0.1 or 0.277, the fitted values of ρd are typically 0.06,
0.04 or 0.1 n! cm lower, respectively, than the values of ρd,ex(4.2). Therefore the ρd-values
are not represented.

Figure 8. The anisotropy parameterAd obtained from 2GM fits with different b-values, as functions
of the deformation.

For the step-height fit within the 3GM we put the right-hand sides of (8) and (9) with the
terms F , G andH based on (12) into (1), i.e. we assume isotropic electron–phonon scattering.
The electron–impurity scattering is assumed to be nearly isotropic with a′ = 1 and b′ = 0.91
after [6]. For simplicity we assume for the anisotropy parameters a′′ and b′′ of electron–
dislocation scattering the relation b′′ = 2a′′. The values of a′′ needed (3GM) to describe the
experimental step height (cf. figure 5) are plotted in figure 9 together with the values of Ad

(2GM) as functions of the dislocation resistivity. It can be seen that the strong increase of
the anisotropy parameters (either Ad or a′′) with ρd,ex(4.2) is in principle independent of the
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Figure 9. Comparison of the anisotropy parameters from fits within the 2GM (Ad: open circles
and dashed line) and the 3GM (a′′: triangles and full lines,). Open triangles: the step-height fit
in the 3GM with isotropic electron–phonon mean free paths; full triangles: the precise curve fit
(3GM) in the range 4.2 K to 40 K based on (6) to (11).

model used. As for the noble metals, the increase of Ad (and analogously of a′′) found from
the step-height fits seems to be due to the inaccuracy of the models (e.g. neglect of small-
angle scattering processes [24]) which is clearly visible as long as the dislocations are not the
dominating scatterers. For larger values of ρd,ex(4.2), we expect for aluminium anisotropy
parameters of the electron–dislocation scattering independent of the dislocation density, as for
the noble metals [11, 12].

4.4. The DMR minimum at low temperatures

As shown in [2], the 3GM is able to describe the experimental DMR curves below 40 K very
well. Also the present DMR curves of figure 6 are described well by the 3GM. So we do not
represent the curves fitted by the 3GM (equations (6) to (11)); we discuss only the parameters
a′′ and b′′ needed. According to Barnard [2], a′′ should be the smaller anisotropy parameter;
thus this would be in line with the case for noble metals (Ad � 0.15 for pure metals; see
[11, 12]), where the relaxation times for hole-like states near the Brillouin zone boundaries
are relatively small compared with those for the nearly free-electron belly states. Using this
idea, we obtained the a′′-values represented by the full triangles in figure 9. These values are
comparable to the Ad-values for the noble metals [11, 12] and are only in some cases larger
than theAd-values of the step-height fits in the 2GM. However, then for b′′ (not shown), values
in the range 0.3 (10%) up to 2 (91%) are needed, similarly to in Barnard’s fits [2]. For the
samples with ε = 114% and 160% we even need b′′ = 8 and 15, respectively. Here it should
be noted that a near interchange of a′′ and b′′ also gives acceptable fits, as y/x and z/x have
the same value 0.4 and the temperature dependences of the mean free path l

p
− and l

p
++ are

similar. Furthermore, we point out the following: in Barnard’s 3GM, the anisotropy of the
electron–phonon scattering is fixed by (6). Therefore some stronger variation in b′′ (or a′′) is
needed when the deformation is increased. For the noble metals there is a similar situation: Ad

is usually kept constant and it is evident that with increasing deformation a severe correction
of the electron–phonon scattering is needed [11, 24].
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Strictly speaking, Barnard’s model is more a 2GM than a 3GM (as y/x = z/x, a′ ∼ b′

and the types of electron–phonon scattering in the second and third groups are rather similar;
see table 1). In the following we show that the formalism of the 2GM as used for the noble
metals is also able (and sufficient) to explain the DMR minima (figure 6) of our deformed
aluminium samples. As can be checked easily by trial and error, the condition for a minimum
within the 2GM based on the three-scatterer formula (5) is that the three anisotropy parameters
are different and that (for instance) the dislocation resistivity is small enough.

According to figure 8 (the curve with b = 0.15), we fixed Ad = 0.07 for dominant
electron–dislocation scattering. Ai = 1.2 was chosen, since we found from our fits for the
curves in figure 6 that the Ai-value fixes the depth of the minimum for the sample with the
smallest deformation. Smaller Ai-values would decrease and larger Ai-values would increase
the depth of the minimum. Some of the Ap-values required (together with Ad = 0.07 and
Ai = 1.2) to fit our 10% curve exactly in the range 4 K to 50 K (figure 6) are given in table 1
(indicated as Ap(10%)). Hence, the fit of the 10% curve in the 2GM is identical with the solid
line for the 10% sample in figure 6. As D(T ) is defined by (16), a minimum within the 2GM
calculation can only arise if δipd < δip in the numerator of (16). Additionally, table 1 shows
the anisotropy parameters ap = l

p
++/l

p
− and bp = l

p
−−/l

p
− calculated from the temperature

dependence of the electron–phonon mean free paths given by (6).
Now the description of the 25% curve is obtained (the dashed line in figure 6) by taking

just the value of ρd,ex(4.2) for the 25% sample and using all the other parameters for the 10%
sample unchanged (i.e. the Ad = 0.07, Ai = 1.2 and Al(10%) of table 1). Similarly, the
depth of the flatter minima can be obtained by varying only ρd,ex(4.2) (not shown for clarity in
figure 6). However, it is impossible to describe even roughly the rapidly increasing curves of
the 114% and 160% samples with the parameters used before. Since ρd,ex(4.2) for the 114%
sample is comparable to ρd,ex(4.2) for the 10% sample, we would obtain a minimum too (the
same is true for the 160% sample). We have found that the change from a DMR curve with a
minimum to a monotonically increasing DMR curve (like the 10% and 114% ones, for which
we have approximately the same value of ρd,ex(4.2)) can only be described if Ai is reduced to
near the value ofAd (e.g.Ad ∼ 0.07 andAi ∼ 0.1 yields the dotted curve for 114% in figure 6,
where the values of Ap(10%) of table 1 were used).

In principle, a change of Ai would be possible if during the annealing of dislocations (the
problem concerns only samples with a large proportion of annealed dislocations), the impurity
atoms are built into the edge dislocation lines. As edge dislocations have a defined relation
to certain lattice directions, the scattering anisotropy of the impurities could be changed.
Otherwise, this idea with Ad ∼ Ai ∼ 0.1 (or 0.2) is not able to explain the rapid increase
for the 91%, 114% and 160% curves. Interestingly, the major impurities in our material (see
section 3) are well suited to being built into edge dislocations: Mg and Ca have larger atoms
than Al, whereas Si has smaller atoms [27].

We suggest that it is a better solution to keep Ad = 0.07 and Ai = 1.2 fixed and to adjust
Ap. Then with one set of Ad and Ai, all the curves in figure 6 (either with minimum or rapid
increase) can be formally described. In order to show the range of Ap-values necessary to
describe exact fits within the 2GM, Ap-values for the 10% and 114% samples are listed in
table 1 (indicated as Al(10%) and Al(114%)), where they can be compared with the values
of ap and bp calculated using (6). Obviously, for the 114% sample the Ap-values are much
larger than unity, while the Ap-values for the 10% sample are comparable with the values
of ap and bp. We think that this behaviour is in line with that of the noble metals, where
for samples with higher deformation, Ap-values larger than unity are needed below 50 K
[24]. However, one has to bear in mind that aluminium has a priori a larger anisotropy for
electron–phonon scattering.
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The physical interpretation of the significant increase of the fitted Ap-values with
deformation could be the following: the ideal phonon resistivity below 20 K or 30 K is
dominated by small-angle scattering [13]. Certainly we can assume that the lattice vibrations
around a dislocation line are somewhat modified (‘local phonon modes’). Such phonons will
be ‘seen’ by the conduction electrons with a somewhat increased scattering cross section as
long as the electron mean free path Lp is much larger than the mean distance a between two
dislocation lines. Since the Burgers vectors of the edge dislocations (in aluminium there are
mainly edge dislocations for ε > 30%; see e.g. [28, 29]) are typically in [011] directions [30],
we expect that for the electron–phonon scattering there arises a strong scattering anisotropy;
i.e. electrons having their k-vectors in [011] directions should be scattered more strongly. In
terms of the noble metals, this would mean that the belly electrons are scattered more strongly
by local phonon modes than the neck electrons. For our 10% and 114% samples we estimated
from figure 4 (N ∼ 0.4 × 1014 m−2) a ∼ 0.1 µm, while Lp ∼ 40 µm for T ≈ 22 K
(free-electron estimation for aluminium with an ideal resistivity of 1 n! cm after [13]). Thus,
a � Lp is in general valid, say for T � 40 K (also for copper). For aluminium we have a � Lp

up to a resistivity ρp = 400 n! cm, which corresponds to a temperature of ≈95 K. Although the
idea of local phonon modes [31] has been mentioned often [32–34], in the context of DMR it
has not really been successful up to now [8, 34]. Unlike other authors, we suggest that the high
scattering anisotropy of lattice vibrations modified by dislocations gives rise to a considerable
DMR contribution (based mainly on small-angle scattering). Additionally, impurities built into
dislocation lines could enhance the effect of local modes. As Lp < a above 100 K, we expect
the role of the ‘local modes’ to become negligible, as the usual large-angle electron–phonon
scattering will clearly dominate. The existence of special phonon modes at edge dislocations
was asserted recently [35].

5. Conclusions

The investigation of the electrical dislocation resistivity and of the dislocation density in high-
purity aluminium is complicated by the fact that dislocations are already partially annealing
out at room temperature. The higher the initial dislocation density, the larger the effect of room
temperature annealing of dislocations. So, slightly deformed samples (having lost almost no
dislocations) and highly deformed samples (with a high proportion of annealed dislocations)
can have comparable values of the dislocation resistivity or dislocation density. Such samples
can be clearly distinguished by the temperature dependence of the experimental dislocation
resistivity (DMR) at low temperatures (4.2 K < T < 50 K). A minimum in the DMR occurs for
samples with strain ε � 65% where the annihilation effect of dislocations at room temperature
is moderate. For larger (nominal) strains, a monotonic increase of the DMR is found which gets
steeper with increasing strain, i.e. steeper with increasing number of annealed dislocations.
However, the two types of DMR curve cannot be distinguished by their step heights at high
temperature: the normalized step height (e.g. D(125 K)) lies on one curve which decreases
with the measured dislocation resistivity independently of the sample history (figure 7).

The step height of the DMR curves and the principal behaviour of the curves below 40 K
can be described either with a three-group model or with a two-group model. The description
with the two-group model has the advantage that the anisotropy parameters needed for the
electron–dislocation scattering are always much smaller than unity (even in the region of the
DMR minima). Thus, qualitative agreement with the Watts model of dislocation resistivity is
achieved within the 2GM, while in general this is not the case for the 3GM (also, anisotropy
parameters for the electron–dislocation scattering larger than unity are obtained). Furthermore,
fits of the temperature dependence of the experimental dislocation resistivity in the two-group
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model show clearly that the principal physics of the DMR in aluminium is comparable to
that for the noble metals. However, the anisotropy of the electron–phonon scattering at low
temperatures is considerably larger in aluminium. If the anisotropy parameters for electron–
dislocation and electron–impurity scattering are fixed (large-angle scattering) for the whole set
of samples, then, as found for the noble metals, Ap (small-angle scattering) is a function of the
(nominal) deformation. The change of Ap could arise from modified phonon modes at edge
dislocation lines (which are prominent in the present samples). Since these dislocations are
bound to certain lattice directions, local phonon modes could give rise to more or less scattering
anisotropy depending on the deformation state and annealing state. In samples where a high
proportion of the dislocations are already annealed, impurities built into the dislocation lines
could enhance the effect of local phonon modes. This could be one reason for the rapid
increases of the DMR curves for the 114% and 160% samples.
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[22] Müller M, Zehetbauer M, Borbély A and Ungár T 1995 Proc. EUROMAT ’95: 4th European Conf. on Advanced

Materials and Processes (Padua/Venice, Italy) p 305
[23] Massalski T B 1996 Physical Metallurgy vol 1, 4th edn, ed R W Cahn and P Haasen (Amsterdam: North-Holland)

p 191
[24] Sachslehner F 1996 J. Phys.: Condens. Matter 8 5891
[25] Schober H R and Dederichs P H 1981 Landolt–Börnstein New Series Group III, vol 13a, ed K-H Hellwege and

J L Olsen (Berlin: Springer) p 10
[26] Müller M 1994 Thesis Universität Wien
[27] King H W 1966 J. Mater. Sci. 1 79
[28] Haasen P 1994 Physikalische Metallkunde 3rd edn (Berlin: Springer)



10514 E Schafler and F Sachslehner

[29] Schafler E, Zehetbauer M and Ungár T 2000 Proc 12th Conf. on Strength of Materials (Monterey, CA, USA,
27 August–1 September 2000); Mater. Sci. Eng. A at press

[30] Hull D and Bacon D J 1984 Introduction to Dislocations 3rd edn (Oxford: Pergamon) p 91
[31] Gantmakher V F and Kulesko G I 1975 Sov. Phys.–JETP 40 1158
[32] Endo T and Kino T 1979 J. Phys. Soc. Japan 46 1515
[33] Kogure Y and Hiki Y 1975 J. Phys. Soc. Japan 39 698
[34] Kus F W and Taylor D W 1982 J. Phys. F: Met. Phys. 12 837
[35] Serebrjany E M 1991 J. Phys. A: Math. Gen. 24 4067


